The importance of a potential phosphorylation site in enamelin on enamel formation
نویسندگان
چکیده
Enamelin (ENAM) has three putative phosphoserines (pSers) phosphorylated by a Golgi-associated secretory pathway kinase (FAM20C) based on their distinctive Ser-x-Glu (S-x-E) motifs. Fam20C-knockout mice show severe enamel defects similar to those in the Enam-knockout mice, implying an important role of the pSers in ENAM. To determine the role of pSer55 in ENAM, we characterized ENAMRgsc514 mice, in which Ser55 cannot be phosphorylated by FAM20C due to an E57>G57 mutation in the S-x-E motif. The enamel microstructure of 4-week-old mice was examined by scanning electron microscopy. The teeth of 6-day-old mice were characterized by histology and immunohistochemistry. The protein lysates of the first lower molars of 4-day-old mice were analyzed by Western immunoblotting using antibodies against ENAM, ameloblastin and amelogenin. ENAMRgsc514 heterozygotes showed a disorganized enamel microstructure, while the homozygotes had no enamel on the dentin surface. The N-terminal fragments of ENAM in the heterozygotes were detained in the ameloblasts and localized in the mineralization front of enamel matrix, while those in the WT mice were secreted out of ameloblasts and distributed evenly in the outer 1/2 of enamel matrix. Surprisingly, the ~15 kDa C-terminal fragments of ameloblastin were not detected in the molar lysates of the homozygotes. These results suggest that the phosphorylation of Ser55 may be an essential posttranslational modification of ENAM and is required for the interaction with other enamel matrix molecules such as ameloblastin in mediating the structural organization of enamel matrix and protein-mineral interactions during enamel formation.International Journal of Oral Science (2017) 9;e4; doi:10.1038/ijos.2017.41; published online 29 November 2017.
منابع مشابه
Dietary change and adaptive evolution of enamelin in humans and among primates.
Scans of the human genome have identified many loci as potential targets of recent selection, but exploration of these candidates is required to verify the accuracy of genomewide scans and clarify the importance of adaptive evolution in recent human history. We present analyses of one such candidate, enamelin, whose protein product operates in tooth enamel formation in 100 individuals from 10 p...
متن کاملEnamelin Is Critical for Ameloblast Integrity and Enamel Ultrastructure Formation
Mutations in the human enamelin gene cause autosomal dominant hypoplastic amelogenesis imperfecta in which the affected enamel is thin or absent. Study of enamelin knockout NLS-lacZ knockin mice revealed that mineralization along the distal membrane of ameloblast is deficient, resulting in no true enamel formation. To determine the function of enamelin during enamel formation, we characterized ...
متن کاملA nonsense mutation in the enamelin gene causes local hypoplastic autosomal dominant amelogenesis imperfecta (AIH2).
Amelogenesis imperfecta (AI) is an inherited tooth disorder affecting tooth enamel formation only. A gene for autosomal dominant AI, the local hypoplastic form, has been localized to a 4 Mb region on chromosome 4q (AIH2). The enamelin gene (ENAM ), has been mapped to chromosome 4q21, to the same region as AIH2, and was recently shown to be mutated in patients with smooth and thin hypoplastic au...
متن کاملConservation and variation in enamel protein distribution during vertebrate tooth development.
Vertebrate enamel formation is a unique synthesis of the function of highly specialized enamel proteins and their effect on the growth and organization of apatite crystals. Among tetrapods, the physical structure of enamel is highly conserved, while there is a greater variety of enameloid tooth coverings in fish. In the present study, we postulated that in enamel microstructures of similar orga...
متن کاملEnamelin and Autosomal-dominant Amelogenesis Imperfecta on Behalf Of: International and American Associations for Dental Research Introduction
Dental enamel forms as a progressively thickening extracellular layer by the action of proteins secreted by ameloblasts. The most abundant enamel protein is amelogenin, which is expressed primarily from a gene on the X-chromosome (AMELX). The two most abundant non-amelogenin enamel proteins are ameloblastin and enamelin, which are expressed from the AMBN and ENAM genes, respectively. The human ...
متن کامل